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Measures of Location



Learning Objectives

1. Understand and interpret the mean, median, and mode

2. Understand and interpret the sample proportion



Where is our Data?

Given a large dataset, how do we
understand where observations typically

fall?



Success: 50 of 50 (100%)
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Measures of Location

▶ Sample mean is the standard average of a distribution.

x = 1
n

n∑
i=1

xi .

▶ Sample median is the halfway point of a dataset, when the
data are ordered.

median =


(
n+1

2

)th
observation n is odd.

Mean of
(

n
2

)th
and

(
n
2 + 1

)th
observations n is even

▶ Sample mode is the most common (set of) observation(s).
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Mean versus Median

▶ When data are approximately symmetric, the mean and median
will be similar.

▶ If data are skewed, the mean is pulled towards the long tail of
the distribution.

▶ In this way, the mean is more sensitive to skewed outliers than the
median.

▶ We generally prefer the median if data are skewed, and the
mean otherwise.
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Examples

Example 1; Mean in Red; Median in Blue
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Examples

Example 2; Mean in Red; Median in Blue
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Examples

Example 3; Mean in Red; Median in Blue
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Examples

Example 4; Mean in Red; Median in Blue
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Examples

Example 5; Mean in Red; Median in Blue
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Examples

Example 5; Mean in Red; Median in Blue
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Sample Proportion

▶ For categorical data, we can consider the relative frequency of
each category as the sample proportion.

▶ Assume that there are categories, c1, c2, . . . , ck , and
observations x1, x2, . . . , xk .

▶ Define zi ,j = I(xi = cj), where I(·) is an indicator function.

▶ Then, we can write the j-th sample proportion as

pj = z ·,j = 1
n

n∑
i=1

zi ,j .
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Example
Success: 20 of 100 (20%)



Summary

▶ Measures of location indicate what usually happens in a dataset

▶ The mean, median, and mode can be computed for quantitative
variables

▶ The mean and median are most commonly used; the median is
preferable for skewed data

▶ The sample proportion is used for indicating the location of a
categorical variable
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